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This paper shows how time-dependent sensory data from an
evolving stimulus can be blindly rescaled in a nonlinear time-
dependent fashion to create a time series of stimulus representa-
tions that are invariant under any unknown invertible transfor-
mation of the sensory data. These representations are invariant,
because they encode ‘‘inner’’ properties of the time series of
stimulus configurations themselves. This means that any two
devices, possibly equipped with significantly different sensors, will
create the same rescaled representation of an evolving stimulus, as
long as they are sensitive to the same internal degrees of freedom
of the stimulus. Such sensor-independent stimulus representations
will also be unaffected by a wide variety of processes that invert-
ibly remap sensor states, including: (i) altered performance of a
device’s detector; (ii) changes in the observational environment
external to the sensory device and the stimulus; and (iii) certain
modifications of the presentation of the stimuli themselves. In an
intelligent sensory device, this kind of representation ‘‘engine’’
could function as a ‘‘front end’’ that passes rescaled sensor state
representations to the device’s pattern analysis module. Because
the effects of many extraneous observational conditions have
been ‘‘filtered out’’ of these representations, it would not be
necessary to recalibrate the device’s detectors or to retrain its
pattern analysis module in order to account for these factors.

Humans form percepts that are remarkably independent of
the condition of their sensors. This fact was strikingly

illustrated by experiments in which subjects wore goggles, cre-
ating severe geometric distortions of the observed scene (1).
Although the subjects initially perceived the distortion, their
perceptions of the world returned to the pre-experimental
baseline after several weeks of constant exposure to familiar
stimuli seen through the goggles. These experiments suggest that
humans utilize recent sensory experiences to ‘‘normalize’’ their
perception of subsequent sensory data in a way that ‘‘filters out’’
the effects of systematic transformations of sensory data. This
impression is reinforced by the fact that different persons tend
to share similar perceptions of the world, despite obvious
differences in their sensory organs and processing pathways. This
‘‘universality’’ of perception may be due to the apparent ability
of each individual to ‘‘filter out’’ the effects of systematic sensor
state transformations, including the transformations relating
his�her sensor states to those of other individuals.

This paper shows how to build sensory devices that mimic this
sensor-independent characteristic of human perception. Specif-
ically, the paper demonstrates how time-dependent sensory
data from an evolving stimulus can be rescaled in a nonlinear
time-dependent fashion to create a time series of stimulus
representations that are invariant under any unknown invertible
transformation of the sensory data. This result has the following
consequence: any two devices, possibly equipped with dramat-
ically different sensors, will create the same rescaled represen-
tation of an evolving stimulus, as long as they are sensitive to the
same internal degrees of freedom of the stimulus. As an illus-
tration, consider any sensory device that consistently and sen-
sitively detects the state of the d degrees of freedom of a
stimulus. Consistency and sensitivity imply that: (i) each stimulus
configuration induces one and only one device ‘‘sensor state’’
(the internal parameters that are produced from the possibly
processed output of the device’s detectors); and (ii) each sensor

state is induced by one and only one configuration of the
stimulus. This correspondence between stimulus configurations
and induced sensor states defines a time-independent invertible
transformation between the d-dimensional manifold of stimulus
configurations and the corresponding collection of device sensor
states. It follows that the sensor state manifolds of any two such
devices must be related by a time-independent invertible trans-
formation, which maps each sensor state of one device onto the
sensor state of the other device that is produced by the same
stimulus configuration. The existence of such a transformation
implies that these devices will create the same stimulus repre-
sentations if they rescale their time-dependent sensor states by
the process demonstrated in this paper. Thus, the rescaling
process enables devices of this kind to ‘‘see’’ the world in the
same sensor-independent way.

In the above, it was assumed that the sensor states of each device
are invertibly related to the underlying stimulus configurations. The
embedding theorems of nonlinear dynamics (2) suggest that this
invertibility requirement will be satisfied by almost any sensory
device with a sufficient number of sensors. Specifically, those
theorems show that, if the stimulus evolves in a d-dimensional
space, the sensor states of almost any device having more than 2d
sensors will be invertibly related to the underlying stimulus config-
urations. Thus, the sensor states of almost all such devices will have
the same rescaled representations.

The method in this paper differs significantly from techniques
for multidimensional scaling or dimensional reduction (3). In
each of these methods, it is necessary to impose an ad hoc
measure of ‘‘distance’’ between each pair of neighboring data
points (4) or, at least, to rank the distances between neighboring
points (5). In each case, the defined distances or rankings are not
invariant under general nonlinear coordinate transformations.
Therefore, the scale values assigned to each data point are also
not transformation-independent, unlike the rescaled represen-
tations described in this paper. However, it should also be stated
that the above-mentioned methods are applicable to data that do
not form a time series, unlike the technique in this paper.

As mentioned above, an invertible transformation relates the
sensor states of two devices that detect the same internal degrees
of freedom of a stimulus. Therefore, the task of finding sensor-
independent stimulus representations is mathematically equiv-
alent to the task of creating transformation-independent stim-
ulus representations; i.e., representations that are unaffected by
invertible transformations of the sensor states from which the
representations are derived. As shown in Theory, a time series of
sensor states defines a ‘‘natural’’ scale or coordinate system on
the sensor state manifold, and each sensor state in the time series
can be represented by its location on that scale. This rescaled
representation of a sensor state is invariant if all of the sensor
states in the time series are subjected to the same invertible
transformation. The invariance reflects the fact that the rela-
tionship between each untransformed sensor state and the scale
derived from the untransformed sensor state time series is the
same as the relationship between the corresponding transformed
sensor state and the scale derived from the transformed time
series. As an illustration, consider the following analogy: the
physical rotation or translation of a collection of particles in a
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plane does not alter the coordinates of each particle in the
collection’s ‘‘natural’’ internal coordinate system (the coordinate
system originating at the collection’s center of mass and oriented
along the collection’s principal axes), even though the absolute
coordinates of each particle are transformed. In this situation,
the rotation�translation transforms the internal coordinate sys-
tem and each particle’s absolute coordinates in the same way,
without disturbing their relationship.

In Theory, we show how tensor calculus can be used to find
a transformation-independent representation of each sensor
state in a time series (ref. 6; also see http:��www.geocities.
com�dlevin2001�reprint1.html, http:��lanl.arXiv.org�abs�
cs.CL�0204003, and http:��www.geocities.com�dlevin2001�
preprint3.html). The theoretical framework is developed with
sufficient generality to handle sensor states having any number
of components. In Experiments with Simulated Data, the method
is then illustrated by applying it to simulated sensor state data
having two dimensions, and the implications of these results are
addressed in Discussion. The simpler special case of one-
dimensional sensor states was discussed in other reports (refs. 7
and 8; also see http:��www.geocities.com�dlevin2001�
reprint2.html and http:��www.geocities.com�dlevin2001�
preprint1.html), where it was applied to analytic examples,
acoustic waveforms of human speech, spectral time series of a
bird song, and spectral time series of speech-like sounds.

Theory
Consider any sensory system having detectors that are sensitive to
various features of an evolving stimulus. These detectors may send
their outputs to a processing unit that combines them in a linear or
nonlinear fashion. For example, in an imaging system, the process-
ing units may extract the time-dependent locations or intensities of
particular image features. In a speech recognition system, the
processing units could compute parameters of the signal’s short-
term Fourier spectrum, such as peak frequencies or amplitudes,
cepstral parameters, etc. This processing may also include linear or
nonlinear dimensional reduction procedures that map the detector
outputs onto sensor states with the same dimensionality as the
underlying degrees of freedom of the stimulus (refs. 4 and 5 and
refs. therein). Let the device’s ‘‘sensor state’’ x denote the array of
numbers xk (k � 1, . . . , N, N � 1) that form the output of the
processing unit, and let x(t) denote the time series of sensor states
produced by an evolving stimulus. This function defines a trajectory
on the manifold of all possible sensor states.

Our goal is to create a representation of each of the observed
sensor states that is unaffected by invertible sensor state trans-
formations. Such a transformation relabels each sensor state in
a way that is mathematically equivalent to a change of coordi-
nates on the sensor state manifold (e.g., x3 x�). Therefore, our
task is to create a coordinate-independent representation of
each sensor state in the time series; i.e., a representation of the
sensor states that is independent of the x coordinate system,
which we happen to be using to label them. Such a coordinate-
independent description can be created with the help of coor-
dinate-independent ways of identifying: (i) a reference sensor
state (x0) that serves as the origin of the sensor state scale; (ii)
a path x(u) (0 � u � 1) through the manifold of sensor states
that connects the reference sensor state to a sensor state of
interest x (x(0) � x0, x(1) � x); and (iii) N linearly independent
contravariant vectors ha (a � 1, . . . , N) at each point along the
path. Here, a vector h is said to be contravariant if it transforms
as h 3 h� � (�x���x)h under the change of coordinate systems
x3 x� (9). If the foregoing conditions are met, each infinitesimal
segment �x along the path can be decomposed into its compo-
nents �s along the vectors ha (Fig. 1):

�x � �
a � 1, . . . ,N

ha�sa. [1]

Note that �s is a coordinate-independent (scalar) quantity,
because �x and ha are contravariant vectors. Therefore, if the
components �s are integrated over the specified path connecting
x0 and x, the result is a coordinate-independent description of the
sensor state x (6, 10):

s � �
x0

x

�s. [2]

Essentially, the vectors ha describe a local coordinate system that
is determined by the intrinsic structure of the sensor state time
series, in the same way that a global ‘‘center-of-mass’’ coordinate
system is determined by the coordinates of the particles in a
collection. Because s denotes the ‘‘location’’ of a sensor state
with respect to these local coordinate systems, it will be invariant
under any invertible transformation (linear or nonlinear) of the
entire sensor state time series, in analogy to the manner in which
the location of a particle in the center-of-mass coordinate system
is invariant under global rotations�translations of the whole
particle collection.

In this paragraph, we show how to derive a coordinate-
independent representation of the sensor state at any particular
time from the sensor states encountered in a chosen time
interval (e.g., the most recent time interval of length �T). The
exact same procedure can be used to rescale the signal level at
other times, thereby deriving a representation of the entire signal
time series. Here, �T is a parameter that can be chosen freely,
although it influences the adaptivity and noise sensitivity of the
method (see Discussion). The first step is to use the sensor state
data in the chosen time interval to define local vectors ha(x) in
a coordinate-independent manner. Consider a point x that has
multiple trajectory segments passing through it in at least N
different directions, where N is the manifold’s dimension. The
time derivatives of the segments passing through x form a
collection of contravariant vectors ĥi at x: ĥi � (dx�dt)�ti

, where
ti denotes the ith time at which the trajectory passes through x.
To verify that this transforms as a vector, note that in any other
coordinate system [x� � x�(x)], the corresponding quantity is
ĥ�i � (dx��dt) � (�x���x)(dx�dt) � (�x���x)ĥi. These quantities
can be used to define N vectors at x if they tend to fall into
clusters oriented along different directions in the manifold. The
first step is to pick an integer C � N and to partition the indices
i into C nonempty sets labeled Sc where c � 1, . . . , C. Next,
compute the N � N covariance matrix Mc of the vectors
corresponding to each set of indices:

Fig. 1. Consider a path x(u) (0 � u � 1) between a reference sensor state x0

and a sensor state of interest. If vectors ha can be defined at each point along
the path, each line segment �x can be decomposed into its components �sa

along the vectors at that point.
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Mc �
1

Nc
�

i � Sc

ĥiĥi, [3]

where Nc is the number of indices in Sc. Each of these matrices
transforms as a tensor with two contravariant indices, and the
determinant of each matrix �Mc� transforms as a scalar density of
weight equal to minus two (9); namely, if coordinates on the
manifold are transformed as x 3 x�, then �Mc� 3 �M�c� �
��x���x�2�Mc�. This result follows from the facts: (i) Mc 3 M�c �
(�x���x)Mc(�x���x)T, where T denotes transpose, and (ii) a
matrix and its transpose have the same determinant. Next,
compute E, which is defined to be the sum of powers of these
determinants:

E � �
c

�Mc�p, [4]

where p is some real positive number. The transformation
property of �Mc� implies that E transforms as a scalar density of
weight �2p. Now tabulate the values of E for all possible ways
of partitioning the set of vectors ĥi into C nonempty sets and find
the partition that results in the smallest value of E. This partition
will tend to group the vectors into subsets with minimal matrix
determinants. Therefore, the vectors in each group will tend to
be linearly dependent or nearly linearly dependent, and they will
tend to form a cluster that is oriented in one direction. Next,
compute the vectors hc at x by finding the average vector in each
part of the optimal partition:

hc �
1

Nc
�

i � Sc

ĥi. [5]

Because the ĥi are contravariant vectors, the hc will also trans-
form as contravariant vectors as long as they are optimally
partitioned in the same manner in any coordinate system.
However, because E transforms by a positive multiplicative
factor, the same partition minimizes it in any coordinate system.
Therefore, the optimal partition is independent of the coordi-
nate system, and the hc are indeed contravariant vectors. Finally,
the indices of the hc can be relabeled so that the corresponding
determinants �Mc� are in order of ascending magnitude. This
ordering is also coordinate-independent, because these deter-
minants transform by a positive multiplicative factor. As a result,
if the foregoing computations are done in any coordinate system,
the same vectors hc will be created, and these vectors provide a
coordinate-independent characterization of the directionality of
the trajectories passing through x.

The first N vectors that are linearly independent can be
defined to be the ha in Eq. 1. These can be used to compute �s,
the coordinate-independent representation of any line element
passing through x. Once we have specified a path connecting a
reference state x0 to any sensor state x, Eq. 2 can be integrated
to create a coordinate-independent representation s of that
state. The path must be completely specified, because the
integral in Eq. 2 may be path-dependent. To understand this
property of Eq. 2, note that Eq. 1 can be inverted to form �sa �
h̃a��x, where the covariant vectors h̃a are found by solving
�a�1, . . . ,Nh̃akha

l � �k
l , �k

l , being the Kronecker delta function. It
follows from Eq. 2 that each component of s is a line integral of
h̃a for a � 1, . . . , N. Stoke’s theorem shows that these line
integrals will be path-dependent unless the ‘‘curl’’ of h̃a vanishes:
(�h̃ak��xl) � (�h̃al��xk) � 0. Because this may not be true for
some sensor state manifolds, we must create a coordinate-
independent way of specifying a path from x0 to any point x on
the manifold. Such a path can be determined in the following
manner (6, 10): first, generate a ‘‘type 1’’ trajectory through x0
by moving along the local h1 direction at x0 and then moving

along the h1 direction at each subsequently encountered point.
Next, generate a ‘‘type 2’’ trajectory through each point on the
type 1 trajectory by moving along the local h2 direction at that
point and at each subsequently encountered point. Continue in
this fashion until a type N trajectory has been generated through
each point on every trajectory of type N � 1. Because of the
linear independence of the ha at each point, the collection of
points on type n trajectories (1 � n � N) comprises an
n-dimensional subspace of the manifold. Therefore, each point
on the manifold lies on a type N trajectory and can be reached
from x0 by traversing the following type of path: a segment of the
type 1 trajectory, followed by a segment of a type 2 trajectory,
. . . , followed by a segment of a type N trajectory. This path
specification is coordinate-independent because the quantities
ha transform as contravariant vectors. Therefore, if Eq. 2 is
integrated along this ‘‘canonical’’ path, the resulting value of s
provides a coordinate-independent description of the sensor
state x; i.e., a description that is invariant in the presence of
processes that remap sensor states.

Strictly speaking, the vectors ha must be computed in the
above-described manner at every point on each path in Eq. 2. It
follows that the trajectory of previously encountered sensor
states x(t) must cover the manifold very densely so that it passes
through every point at least N times. However, this requirement
can be relaxed for most applications. Specifically, suppose that
the ha are computed only at a finite collection of sample points
on the manifold, and suppose that these vectors are computed
from derivatives of trajectories passing through a very small
neighborhood of each sample point (not necessarily passing
through the sample point itself). Furthermore, suppose that
values of ha between the sample points are estimated by para-
metric or nonparametric interpolation (e.g., splines or neural
nets, respectively). The resulting vectors will be correct as long
as the spacing between the sample points and the sizes of the
small neighborhoods around them are small relative to the
distance over which the directionality of the manifold varies. If
the data are transformed into any other coordinate system by a
transformation that is smooth enough to be nearly linear over
these neighborhoods, they will lead to the same vectors, and,
therefore, to the same rescaled representation of each sensor
state. Thus, it is desirable for the sensor state trajectory to cover
the manifold as densely as possible so that vectors can be
computed in the smallest possible neighborhoods, making the
derived rescaled representations invariant under the largest
possible class of coordinate transformations. However, even if
the manifold has been covered sufficiently densely, special
circumstances may prevent the derivation of vectors ha at some
locations. For example, suppose that there is no unique way of
partitioning the ĥi at a point to minimize E, or suppose that the
hc (Eq. 5) associated with a minimal value of E do not contain
N linearly independent members. These results would indicate
that the temporal course of sensor states x(t) does not endow the
manifold with sufficient directionality at every point. In this
situation, it may still be possible to create coordinate-
independent representations of stimuli by means of other meth-
ods (based on affine-connected and�or Riemannian differential
geometry), which require only that the manifold have intrinsic
directionality at a single point. The vectors at that point can then
be moved (parallel transported) to other points on the manifold.
These differential geometric techniques are described and illus-
trated with numerical examples in ref. 6. (also see the web sites
cited in the Introduction)

In the above discussion, it was assumed that the reference state
was chosen in a coordinate-independent manner; i.e., the sensor
state data in the x and x� coordinate systems were rescaled with
respect to reference states related by x�0 � x�(x0). For example,
this condition could be satified by choosing the reference state
to be the sensor state that is the local maximum of a function x
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defined to be the number of times x is encountered in a chosen
time interval. Alternatively, prior knowledge may be used to
choose the reference state. For instance, we may know that the
null sensor state always corresponds to the same stimulus, and,
therefore, it can be chosen to be the reference state. For
instance, this might be the case if the transformations of interest
reflect differences in the gain curves of the detectors of different
devices. Finally, the reference sensor state may be chosen to be
the sensor state produced by a user-determined stimulus that is
‘‘shown’’ to the sensory device. Recall that the reference sensor
state serves as the origin of the scale function used to rescale
other sensor states. Therefore, this last procedure is analogous
to having a choir leader play a note on a pitch pipe to ‘‘show’’
each singer the origin of the desired musical scale. Notice that
stimulus representations that are referred to different reference
stimuli may reflect different ‘‘points of view.’’ For example,
suppose that a device is observing a glass of beverage. It will
‘‘perceive’’ the glass to be half full or half empty if it uses
reference sensor states corresponding to an empty glass or a full
glass, respectively.

Experiments with Simulated Data
In this section, the method in Theory is demonstrated by applying
it to simulated data on a two-dimensional sensor state manifold.
Let x � (x1, x2) represent the sensor state of the device. For
example, these numbers might be the coordinates of a specific
feature being tracked in a time series of digital images, or they
could be the amplitudes or frequencies of peaks in the short-term
Fourier spectrum of an audio signal. Suppose that Fig. 2a depicts
the sensor states to be used to derive the rescaling of a current
sensor state. Notice that these trajectory segments tend to be
oriented in nearly horizontal or vertical directions, thereby

endowing the manifold with directionality at each point. We
used these data to compute the local vectors ha on a uniform grid
of sample points that was centered on the origin and had spacing
equal to two units. Specifically, we considered a small neigh-
borhood of each sample point, and the time derivatives of each
trajectory segment traversing the neighborhood were computed
at equal time intervals. Then, Eqs. 3–5 with p � 1 were applied
to derive local vectors from the collection of time derivatives at
each sample point. The resulting vectors ha, shown in Fig. 2b,
were then interpolated to estimate the vectors at intervening
points. As expected, these vectors reflect the horizontal and
vertical orientations of the trajectory segments from which they
were derived. Finally, Eqs. 1 and 2 were applied to these ha to
compute the coordinate-independent representation s of each
sensor state on the manifold, relative to the reference state that
was chosen to be x0 � (0, 0). The result is shown in Fig. 2c, which
depicts the level sets of the scale function s(x) that is intrinsic to
the sensor state history in Fig. 2a. Fig. 2d shows how an ‘‘image’’
of sensor states in the x coordinate system is represented in the
s coordinate system.

Next, we considered what would have happened if the same
device had ‘‘experienced’’ the sensor states shown in Fig. 3a.
These trajectory segments are related to those in Fig. 2a by the
following nonlinear transformation:

x13 0.1 � x1 � 0.1x2 � 0.01x1
2 � 0.02x2

2 � 0.01x1x2

x23 0.2 � 0.2x1 � x2 � 0.01x1
2 � 0.02x2

2 � 0.01x1x2. [6]

For example, suppose that the sensor state is the location of
a feature in an evolving digital image. Eq. 6 could represent
the way the sensor states are transformed by a distortion in the

Fig. 2. (a) The trajectory of simulated sensor states x(t) to be used to derive the rescaling of a current sensor state. The speed of traversal of each trajectory
segment is indicated by the dots, which are separated by equal time intervals. The nearly horizontal and vertical segments are traversed in the left-to-right and
bottom-to-top directions, respectively. (b) The local vectors ha that were derived from the data in a by means of the method in Theory. The nearly horizontal
and vertical lines denote vectors that are oriented to the right and upward, respectively. (c) The level sets of s(x), which show the intrinsic coordinate system or
scale derived by applying the method in Theory to the data in a. The nearly vertical curves are loci of constant s1 for evenly spaced values between �11 (Left)
and 12 (Right); the nearly horizontal curves are loci of constant s2 for evenly spaced values between �8 (Bottom) and 8 (Top). (d) The coordinate-independent
representation (Right) of a grid-like array of sensor states (Left), obtained by using the scale in c to rescale those sensor states.

Fig. 3. (a) The trajectory of simulated sensor states x(t) that are related to those in Fig. 2a by the coordinate transformation in Eq. 6. (b) The local preferred vectors
ha that were derived from the data in a by means of the method in Theory. (c) The level sets of s(x), which show the intrinsic coordinate system or scale that was
derived by applying the method in Theory to the data in a. The vertical curves are loci of constant s1 for evenly spaced values between �12 (Left) and 11 (Right);
the horizontal curves are loci of constant s2 for evenly spaced values between �9 (Bottom) and 7 (Top). (d) The coordinate-independent representation (Right)
of the array of sensor states (Left), obtained by rescaling the sensor states on the left by means of the scale in c. Left was created by subjecting the corresponding
panel in Fig. 2d Left to the coordinate transformation in Eq. 6.
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optical�electronic path within the camera, by distortions in the
optical channel between the imaged object and the camera, or by
a distortion of the object itself (e.g., distortion of a printed page).
The procedure outlined above was used to compute the local
vectors on a uniform grid of sample points. Fig. 3b shows the
resulting vectors, which are oriented along the principal direc-
tions apparent in Fig. 3a. Next, interpolation was used to
estimate the ha at intervening points, and Eqs. 1 and 2 were used
to compute the coordinate-independent representation s of each
sensor state on the manifold, relative to the reference sensor
state that was chosen to be x0 � (0.1, 0.2). Notice that we have
assumed prior knowledge of the transformed coordinates of the
reference sensor state. In other words, we have assumed that we
have the prior knowledge necessary to identify this state both
before and after the onset of the process, which remaps the
sensor states. The result of this calculation is shown in Fig. 3c,
which depicts the level sets of the function s(x), the scale function
inherent to the sensor state data in Fig. 3a. This function was
used to compute the s representation of the transformed version
of the ‘‘image’’ in Fig. 2d Left. The transformed image and its s
representation are shown in Fig. 3d. Comparison of Figs. 2d and
3d shows that the s representations of the untransformed and
transformed images are nearly identical. The s representations
are nearly the same because the unrescaled images are the same
image viewed in different coordinate systems, and the rescaling
process creates a coordinate-independent description of the
image’s relationship to the intrinsic structure (ha vectors) of the
manifold. The tiny discrepancies between the right sides of Figs.
2d and 3d can be attributed to errors in the interpolation of the
ha, which are due to the coarseness of the grid on which ha was
sampled and to the size of the neighborhoods used to determine
the vectors at each sample point. This error can be reduced if the
distance between sample points and the size of the neighborhood
around each sample point can be decreased. This improvement
is possible if the device is allowed to experience a denser set of
sensor states (i.e., more trajectory segments than shown in Figs.
2a and 3a), so that even tiny neighborhoods contain enough data
to compute the ha.

Discussion
In this paper, we demonstrated how time-dependent sensory
data from an evolving stimulus could be rescaled in a nonlinear
time-dependent fashion in order to create a time series of
stimulus representations that are invariant under any unknown
invertible transformation of the sensory data. In the Introduc-
tion, we argued that this result has the following consequence:
any two devices that sensitively and consistently detect the same
d degrees of freedom of an evolving stimulus will create the same
rescaled representation of the stimulus, even though the devices
may be equipped with significantly different sensors. This con-
clusion followed from two related facts: there must be a time-
independent invertible mapping between the d-dimensional
manifold of stimulus configurations and a corresponding d-
dimensional manifold of sensor states of each such device and,
therefore, there is a time-independent invertible transformation
between the sensor states of any two such devices, as they
observe the same evolving stimulus. Notice that the rescaled
representation of the sensor state time series in any such device
must be identical to the rescaled representation of the time series
of stimulus configurations themselves, because the two time
series are invertibly related. Thus, the rescaled sensor state time
series can be considered to reflect an ‘‘inner’’ property of the
time series of stimulus configurations. In a sense, this is why the
rescaled sensor states are not affected by device-dependent
‘‘outer’’ features of the sensory process, such as the nature of the
device’s raw sensor states or the coordinate system that the
device uses to label them.

Notice that any physical process that invertibly transforms the
sensor states of a device will not affect the transformation-
independent stimulus representations described in this paper.
Transformative processes of this kind may include: (i) altered
performance of the device’s detectors (e.g., altered gain curve of
a detector circuit or distortion of an electronic image in a
camera); (ii) alterations of observational conditions that are
external to the detectors and the stimuli (e.g., different intensity
of a scene’s illumination or different positioning of the detectors
with respect to the stimuli); (iii) systematic modifications of the
presentation of the stimuli themselves (e.g., systematic warping
of printed pages or of a voice). Furthermore, any such device will
produce identical rescaled representations of two different
stimuli (e.g., S and S�), whose time-dependent configurations are
related by a time-independent invertible mapping. To under-
stand this fact, recall that there is a time-independent invertible
mapping between the time series of S configurations and the
time series of sensor states x(t) produced by S. Likewise, there
is an invertible mapping between the time series of S� configu-
rations and the time series of sensor states x�(t) when the device
observes S�. It follows that there is a time-independent invertible
mapping between x(t) and x�(t) and, therefore, these time series
have identical rescaled representations. For example, a com-
puter vision system would create the same rescaled representa-
tions of the time series of facial expressions of two different
faces, as long as there were a time-independent invertible
mapping that related each expression of one face to the corre-
sponding expression of the other one (i.e., as long as the faces
consistently mimicked each other).

Strictly speaking, there is more than one way to interpret such
an observation; i.e., the observation of two different sensor state
time series, each of which leads to the same time series of
rescaled representations. Without additional information, the
device may not be able to determine whether the differences
between the two sensor state time series were due to: (i) intrinsic
differences in the stimuli themselves; (ii) the presence of a
process that affected the device’s detector or the ‘‘channel’’
between it and the stimulus. Of course, humans can suffer from
illusions because of similar confusions. Like a human, the device
could distinguish between these possibilities only if it had
additional information about the likelihood of various processes
that might cause the transformation between the observed
sensor states or if it were able to observe additional degrees of
freedom of the stimulus.

In the above discussion, it was assumed that the sensor states
in a given time series were remapped by a time-independent
invertible transformation. Now, consider the effects of the
sudden onset of a process that invertibly transforms the sensor
states. Suppose that each sensor state is rescaled by means of a
scale derived from the sensor state time series encountered in
the most recent �T time units. After the onset of the transfor-
mative process, there will be a transitional period of length �T,
during which the device’s stimulus representations will not be the
same as those derived from the corresponding time series of
untransformed sensor states. This difference occurs because the
device’s representations are referred to a mixture of transformed
and untransformed sensor states. However, once the sensor state
‘‘database’’ is dominated by transformed data (i.e., once �T time
units have elapsed), the representation of each stimulus will
return to the form that is derived from the untransformed sensor
state time series. A transformation-independent representation
will be recovered because the description of each subsequently
encountered sensor state will be referred to the properties of a
collection of transformed sensor states. Thus, like a human, the
system adapts to the presence of the transformation after a
period of adjustment. This phenomenon has been illustrated by
experiments reported elsewhere (7, 8). The time interval �T
should be long enough so that the sensor states observed within
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it populate the sensor state manifold with sufficient density to
derive sensor state representations (see the discussion of this
issue in Theory). Specifically, there must be enough sensor state
trajectory segments near each point to endow the manifold with
local structure (local vectors) that can serve as ‘‘landmarks.’’
Thus, the device must have sufficient ‘‘experience’’ to form
stimulus representations, reminiscent of the role of experience
in the acquisition of vision by human infants (11). Increasing �T
will also tend to decrease the noise sensitivity of the method,
because it increases the amount of signal averaging in the
determination of the local structure (7, 8). Within these limita-
tions, �T should be chosen to be as short as possible so that the
device rapidly adapts to changing observational conditions.

Notice that, if the stimulus representation at each time point
is derived from sensor states encountered in a ‘‘sliding time
window’’ (e.g., the most recent time interval of length �T), a
given sensor state may be represented in different ways at
different times. Specifically, two representations may differ
because they are referred to different collections of recently
encountered sensor states. In other words, the representation of
a recurring stimulus may be time-dependent because the repre-
sentations are derived from the device’s recent ‘‘experience’’ and
that experience may be time-dependent. Conversely, a given
stimulus will be represented in the same way at two different
times as long as the two descriptions are referred to collections
of stimuli having the same average local properties (i.e., the same
ha). Thus, the stability of the stimulus representation depends on
the stationarity of the vectors ha that are used to create that
representation. As an illustration, imagine the following exam-
ple. Consider the location of a particle in the center-of-mass
coordinate systems of two different clusters of particles in a
plane. The two descriptions of the particle’s location will be the
same, as long as the two collections have the same center-of-mass
coordinate systems. In other words, the two representations of
the particle’s location are identical as long as these descriptions
are referred to particle collections with the same ‘‘average’’
properties. Similarly, the stability of the average local properties
of recently encountered sensor states will stabilize the repre-
sentation of individual stimuli. If this type of temporal stability
is important, stimulus representations should be derived from
collections of sensor states that are sufficiently large to have
stable statistical properties. This constraint may put a lower
bound on the length of the time period (e.g., �T) during which

those sensor states are collected. Notice that rescaled stimulus
representations have the same type of stability as the percepts of
the human subjects of ‘‘goggle’’ experiments (1). Specifically,
each subject’s perception of stimuli returned to the pregoggle
baseline, after a period of adjustment during which he�she was
exposed to familiar stimuli seen through the goggles. Likewise,
the rescaled representation of each stimulus will return to the
form that it had before the onset of a transformative process,
after a period of adjustment during which the sensory device
encounters stimuli with average properties similar to those
encountered earlier.

The nonlinear signal-processing method presented in this
paper could be used as a representation ‘‘engine’’ in the ‘‘front
end’’ of intelligent sensory devices (D.N.L., patents pending). It
would produce rescaled sensor state representations that are
passed to the device’s pattern analysis module. Because the
effects of many extraneous observational conditions have been
‘‘filtered out’’ of these representations, it would not be necessary
to recalibrate the device’s detectors or to retrain its pattern
analysis module to account for these factors. Other reports (refs.
6–8; also see web sites cited in the Introduction) discuss possible
applications to systems for: (i) computer vision, (ii) channel- and
speaker-independent speech recognition, and (iii) channel-
independent telecommunication of information.

Humans tend to have similar perceptions despite significant
differences in their sensory organs and processing pathways.
Furthermore, each individual has the remarkable ability to
perceive the intrinsic invariance of a stimulus even though its
‘‘appearance’’ is changing because of extraneous factors. These
phenomena have been the subject of philosophical discussion
since the time of Plato (e.g., the allegory of ‘‘The Cave’’), and
they have also intrigued modern neuroscientists (12). This paper
shows how to design a sensory device that represents stimuli
invariantly in the presence of processes that systematically
transform their sensor states. These stimulus representations are
invariant because they encode ‘‘inner’’ properties of the time
series of the stimulus configurations themselves; i.e., properties
that are independent of the nature of the observing device or the
conditions of observation. Perhaps the approximate universality
and constancy of human perception are due to a similar appre-
ciation of the ‘‘inner’’ structure of time series of experienced
stimuli. A significant evolutionary advantage would accrue to
organisms that developed the ability to process sensory infor-
mation in this way.
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